Electricity Generation in Nuclear and Fossil Power Plants

Prof. Jacopo Buongiorno

Nuclear Science and Engineering Dept., MIT Jacopo@mit.edu, tel. 617-253-7316

Why electricity is important Electric lights

Why electricity is important (2) Home appliances run on electricity

Why electricity is important (3) Some means of transportation run on electricity

The fastest trains in the World are electric

Why electricity is important (4) Factories run on electricity

Why electricity is important (5)
 Strong correlation between reliable access to electricity and quality of

life

Where do we get electricity from?

We don't mine it

We don't harvest it

Where do we get electricity from? (2)
We need to generate it from other primary energy sources...

So, to generate electricity, I need to spin an electric generator

Where do we get electricity from? (3) To spin an electric generator, I can use:

Wind

Needs a place that is windy most of the time

Where do we get electricity from? (4) To spin an electric generator, I can use:

Water

Needs a dam to collect a lot of water

Where do we get electricity from? (5) To spin an electric generator, I can use:

How do I get steam? Boil water, which requires *heat*

Where do we get electricity from? (6) To get heat, I can burn:

Coal

Coal is mined from the ground

Where do we get electricity from? (7) To get heat, I can burn:

Natural Gas

We drill deep underground and undersea to extract natural gas

Where do we get electricity from? (8) To get heat, I can use:

Sunlight

Needs a place that is sunny most of the time

Where do we get electricity from? (9) To get heat, I can use:

Geothermal

Limited number of locations where Earth's internal energy rises to the surface

Where do we get electricity from? (10) To get heat, I can use:

Nuclear Energy

Nuclear fuel is uranium, mined from underground

Where do we get electricity from? (11)

	US	World
1)Coal	37%	41%
2)Natural Gas	30%	22%
3)Nuclear Energy	19%	12%
4)Water (hydro)	7%	16%
5)Wind	<4%	<2%
6)Geothermal	<1%	<1%
7)Sunlight (solar)	<1%	<1%
8)Other (oil, biomass,)	~2%	~6%
Focus here is on nuclear, o	coal and na	itural gas

Things to watch about primary energy sources for electricity generation

- Fuel availability (how much fuel there is) and reliability of fuel supply
- Land use (how much land is used)
- Pollution (what is released into the environment)
- Continuity of generation (can electricity be generated all the time)
- Cost (how expensive it is)

Fossil Fuels (coal and natural gas)

Electricity Generation from Fossil Fuels

- 1. Heat is released from combustion of fuel (**coal, gas, oil**) and boils the water to make steam
- 2. The steam turns the turbine
- 3. The turbine turns a generator and electricity is produced
- 4. The electricity goes to the transformers to produce the correct voltage

Natural Gas : Combined Cycle Gas Turbine (CCGT)

The comparative advantages of CCGT: Low investment cost, Flexibility, Low emissions (compared to coal), High efficiency

Environmental Performance of Coal and Natural Gas Power Plants

Is Carbon Capture and Storage a viable solution?

- Carbon capture and storage (CCS) is the process of capturing CO₂ from fossil fuel power plants, transporting it to a storage site, and depositing it where it will not enter the atmosphere, normally an underground geological formation
- It is a **potential** (CCS on large scale is a relatively new concept) but **expensive** means of mitigating the contribution of fossil fuel emissions to global warming and ocean acidification.

Nuclear Energy

THE NUCLEAR FISSION PROCESS

Neutron-driven chain reaction producing heat

- The isotope 235 of Uranium (U-235) is the fuel: 2.5 million times more energy per kg than coal
- Only 37 tons of fuel (3%-enriched uranium) per year needed for 1000 MWe reactor
- Nuclear fission provides an <u>emission-free heat source</u> that can be converted into <u>electricity</u>

Nuclear compared to fossil fuels

Fuel energy content

Coal (C): C + $O_2 \rightarrow CO_2 + 4 \text{ eV}$ Natural Gas (CH₄): CH₄ + $O_2 \rightarrow CO_2 + 2H_2O + 8 \text{ eV}$ Nuclear (U): ²³⁵U + n \rightarrow ⁹³Rb + ¹⁴¹Cs + 2n + 200 MeV

Fuel Consumption, 1000 MWe Power Plant (~740,000 homes)

```
Coal (40% efficiency):

10^{9}/(0.4x4x1.6x10^{-19}) \approx 3.9x10^{27} C/sec (=6750 ton/day)

Natural Gas (50% efficiency):

10^{9}/(0.5x8x1.6x10^{-19}) \approx 1.6x10^{27} CH<sub>4</sub>/sec (=64 m<sup>3</sup>/sec)

Nuclear (33% efficiency):

10^{9}/(0.33x200x1.6x10^{-13}) \approx 1.0x10^{20} <sup>235</sup>U/sec (=3 kg/day)
```

 $1 \text{ eV} = 1.6 \text{x} 10^{-19} \text{ J}$

Uranium Milling & Mining Process

- 1 ton ore = 2-3 lb (1-2 kg) uranium
- End product is U₃O₈ powder ("yellowcake")
- Major suppliers:
 - Canada
 - Australia
 - Kazakhstan
 - Africa
 - Former Soviet Union [FSU]

Uranium Enrichment

- Natural uranium is only 0.7%
 U-235 and 99.3% U-238
- Nuclear reactors need uranium with U-235 concentration in 3-5% range
- Thus the uranium fuel has to be "enriched" in U-235
- U₃O₈ is converted to UF₆ (a gas) and then centrifuged to separate U-235 from U-238

Fabrication of Fuel Assemblies

- Once UF₆ has been enriched, it is converted to UO₂ and formed into cylindrical pellets
- UO₂ pellets are inserted into sealed tubes, called "fuel pins"
- Fuel pins are bundled into a fuel assembly

UO₂ pellets

Fuel pin

The Nuclear Reactor Core

- Hundreds of fuel assemblies are arranged in a regular lattice to form the reactor core
- The reactor core is housed within a Reactor Pressure Vessel (RPV) made of steel

Boiling Water Reactor (BWR)

Pressurized Water Reactor (PWR)

Rankine (or Steam) Cycle

Turbine-generator

turns internal energy of steam into work, then electricity

Heat Discharge in Power Plants

2nd law of thermodynamics: not all heat input can be converted to electric energy

Net Electric Output

 η (efficiency) \equiv

Heat Input

Depends on steam temperature (280-600°C) and ambient temperature: 33-35% (nuclear), 38-45% (coal), 50-60% (CCGT)

Power Plant

Nuclear Energy in the US, today

- 100 US reactors, 100 GWe is 13% of US installed capacity but provides about 19% of total electricity.
- In 2010 nuclear energy production in the US was the highest ever.
- US plants have run at 86.4% capacity in 2012, up from 56% in 1980.
- 3.1 GWe of uprates were permitted in the last decade.
 1.5 GWe are expected by 2017.
- 73 reactor licenses extended, from 40 years to 60 years of operation, 27 more reactors in process.
- Electricity production costs of nuclear are the lowest in US (1.9-2.9 ¢/kWh), but natural gas costs have come down

Calvert Cliffs - MD

Diablo Canyon - CA

Seabrook - NH

Indian Point - NY

Prairie Island site - MN

Robinson - SC

Surry - VA

The MIT Research Nuclear Reactor

- 6 MW power
- Located on MIT campus
- Operated by MIT students
- In service for 50+ years!

Nuclear Energy in the World Today

Courtesy of MIT graduate student Mark Reed

About 440 World reactors in 30 countries, 12% of global electricity produced.

60 new reactors are in various stages of construction

Olkiluoto – Finland

Flamanville – France

Lungmen – Taiwan

Rostov – Russia

Shimane – Japan

Kudankulam – India

Shin kori – S. Korea

Taishan – China

3 project ongoing in the US

Vogtle, Georgia

Summer, South Carolina

Watts Bar, Tennessee

The Case for New Nuclear Plants

Concerns for *climate change...*

Photo provided by the National Snow and Ice Data Center

~570,000,000 ton of CO_2 emissions avoided in the US in 2012

The Case for New Nuclear Plants (2)

...and growing fossil fuel imports and consumption

Total U.S. Energy Consumption

Oil is the Challenge

U.S. data from EIA, Annual Energy Outlook 2008 Early Release, years 2006 and 2030; world data from IEA, World Energy Outlook 2007, years 2005 and 2030

Challenge # 1: Economics

Nuclear Energy Economics

Financial risk for new plants is high

- Initial investment is large (\sim \$3,500/kW \Rightarrow G\$/unit)
- Nuclear production costs (fuel + O&M) are lowest of all energy sources

 Plant decomissioning and nuclear fuel disposal costs are included Challenge # 2: Public Perception of Nuclear Safety

What is nuclear radiation?

- High energy particles emitted by nuclei as a result of a nuclear decay (e.g. α, β, γ) or reaction (e.g. neutrons from fission)
- Nuclear radiation is a natural phenomenon... the Earth, its plants and animals (including humans) are naturally radioactive!
- Radiation damage to humans depends on the "dose", i.e. amount of radiation per unit body mass (the SI unit is the Sievert or Sv)

Nuclear power plants produce

very large amounts of radioactive nuclides (fission products), some with long half-life (>years)

Radionuclide content of representative LWR spent fuel at discharge and 180 days of representative LMFBR fuel at discharge and 30 days[‡]

			Activity, Ci/t metal				
			LWR fuel		LMFBR fuel		
Nuclide	Half-life $T_{1/2}$	Radiations [‡]	Discharge	180 d	Discharge	30 d	
³ H ⁸⁵ Kr ⁹⁰ Sr ⁹⁰ Y ⁹¹ Y ⁹⁵ Zr ⁹⁵ Nb ⁹⁹ Mo ^{99m} Tc	12.3 y 10.73 y 50.5 d 20.9 y 64.0 h 59.0 d 64.0 d 3.50 d 66.0 h 6.0 h	β β, γ β, γ	5.744×10^{2} 1.108×10^{4} 1.058×10^{6} 8.425×10^{4} 8.850×10^{4} 1.263×10^{6} 1.637×10^{6} 1.557×10^{6} 1.875×10^{6} 618×10^{6}	5.587×10^{2} 1.074×10^{4} 9.603×10^{4} 8.323×10^{4} 8.325×10^{4} 1.525×10^{5} 2.437×10^{5} 4.689×10^{5} 3.780×10^{-14} 3.589×10^{-14}	$\begin{array}{c} 1.648 \times 10^{3} \\ 1.473 \times 10^{4} \\ 1.333 \times 10^{6} \\ 9.591 \times 10^{4} \\ 1.214 \times 10^{5} \\ 1.794 \times 10^{6} \\ 3.215 \times 10^{6} \\ 3.149 \times 10^{6} \\ 4.040 \times 10^{6} \\ 3.487 \times 10^{6} \end{array}$	$ \begin{array}{r} 1.640 \times 10^{3} \\ 1.466 \times 10^{4} \\ 8.939 \times 10^{5} \\ 9.572 \times 10^{4} \\ 9.572 \times 10^{4} \\ 1.269 \times 10^{6} \\ 2.340 \times 10^{6} \\ 2.954 \times 10^{6} \\ 2.108 \times 10^{3} \\ 2.002 \times 10^{3} \\ \end{array} $	
⁹⁹ Tc	2.1 x 10 ⁵ y	β, γ	1.435×10^{1}	1.442×10^{1}	3.278 x 10 ¹	3.293×10^{1}	

Nuclear Safety Primer

- Hazard: fission products are highly radioactive
- Objective: protect environment/staff/public by preventing uncontrolled release of radioactivity
- Safety Principle #1: Defense in Depth There exist multiple physical barriers between the source of radioactivity (the fission products) and the environment.

Fuel pellet and cladding

Reactor coolant system

Containment

Nuclear Safety Primer (2)

- Safety Principle #2: prevent fuel overheating at all time. There are Engineered Safety Systems to:
- Shut down reactor: stop chain reaction and terminate fission heat
- Remove decay heat: lingers long after reactor shutdown
- Maintain (or replenish) reactor coolant inventory: keep fuel covered
- Relieve pressure: prevent component failure

Safety Systems in Traditional Plants

Require offsite AC power and/or diesel generators to operate pumps. Can be defeated by a station blackout (Fukushima accident)

- (1) Shut down the reactor
- (2,3) Remove decay heat
- (4,5,6) Maintain coolant inventory
- (7) Relieve pressure

Fundamentals of Natural Circulation

Natural circulation = fluid flow in the absence of a pump

 $\Delta p_{\text{Buoyance}} = (\rho_{\text{cold}} - \rho_{\text{hot}}) H \vec{g}$

Hot fluid is light and wants to rise (buoyancy), cold fluid is heavy and wants to sink

Safety Systems in Advanced Plants

Use natural circulation and gravity, no need for pumps and AC power

- (A) Internal control rods (shut down reactor)
- (B) Low-pressure gravity-driven injection (maintain coolant inventory)
- (C) Natural-circulation decay heat removal
- (D) Containment heat removal
- (E) Automatic Depressurization System (relieve pressure)

Challenge # 3: Nuclear Waste Disposal

Spent Fuel Management (waste disposal)

In the US all spent fuel is currently stored at the plants

- In the spent fuel storage pools for about
 10 years ...
 - ... then transferred to sealed dry casks; cooled by air; heavily shielded; internal temperature and pressure monitored;
 / can last for decades with minimal maintenance and cost.
- A 1000-MW reactor requires about 80 dry casks for all the spent fuel it produces in 60 years of operation (about 3 acres of land).
- Dry cask storing of all US nuclear fleet spent fuel would require only 300 acres of land. (The volumes are small !)

Spent Fuel Management (waste disposal) (2)

In the long-term the spent fuel can be stored in geological repositories, either "shallow" (300-400 m) or deep (>2000 m)

(200 m)

Spent Fuel Management (recycling)

Composition of spent nuclear reactor fuel

 1 LWR fuel assembly = 500 kg uranium before irradiation in the reactor

96% of a spent fuel assembly is still valuable, so could be recycled and reused in reactors!

Conclusions

- Electricity is generated from primary energy sources: coal, natural gas, nuclear, hydro, wind, solar, geothermal etc.
- Fossil fuels (coal and gas) account for >60% of the World's electricity production
- Nuclear fuel (uranium) has the highest energy intensity of all primary energy sources
- Nuclear produces ~19% of US electricity and ~12% worldwide today
- Nuclear does not emit greenhouse gases
- Challenges facing nuclear are capital cost of new plants, perception of safety and waste disposal