	NSE Nuclear Science
	and Engineering
	science : systems : society
	PUT A CARACTERISTICS AND A CARACTERISTICS
	ELECTRICITY GENERATION AND
	TRANSMISSION
	Michael W. Golay, Professor of Nuclear Science and Engineering
	Lab4energy International 2014, January 10 at MIT
	NSE Nuclear Science and Engineering
ii (NSE Nuclear Science and Engineering ORGANIZATION OF PRESENTATION
	NSE Nuclear Science and Engineering DRGANIZATION OF PRESENTATION Why interest in renewable electricity generation technologies? Answer: To reduce climate change
ir (NSE Nuclear Science and Engineering DRGANIZATION OF PRESENTATION Why interest in renewable electricity generation technologies? Answer: To reduce climate change What are the renewable electricity generation technologies?
ات • •	NSE Nuclear Science and Engineering DRGANIZATION OF PRESENTATION Why interest in renewable electricity generation technologies? Answer: To reduce climate change What are the renewable electricity generation technologies? How do the electrical generation technologies compare?
· · ·	NSE Michael Science and Engineering DRGANIZATION OF PRESENTATION Why interest in renewable electricity generation technologies? Answer: To reduce climate change What are the renewable electricity generation technologies? How do the electrical generation technologies compare? What is a typical national industrialized country electrical production system like?
• • • •	NSE Widear Science and Engineering DRGANIZATION OF PRESENTATION Why interest in renewable electricity generation technologies? Answer: To reduce climate change What are the renewable electricity generation technologies? How do the electrical generation technologies compare? What is a typical national industrialized country electrical production system like? What is the electrical grid?
	NSE Wildear Science and Engineering DRGANIZATION OF PRESENTATION Why interest in renewable electricity generation technologies? Answer: To reduce climate change What are the renewable electricity generation technologies? How do the electrical generation technologies compare? What is a typical national industrialized country electrical production system like? What is the electrical grid? What influences are causing the grid to change?
	NE Multier Science and Engineering DRGANIZATION OF PRESENTATION Why interest in renewable electricity generation technologies? Answer: To reduce climate change What are the renewable electricity generation technologies? How do the electrical generation technologies compare? What is a typical national industrialized country electrical production system like? What is the electrical grid? What influences are causing the grid to change? – Free markets

FUNDAMENTAL SOURCES OF ENERGY USED BY DIFFERENT ENERGY TECHNOLOGIES

Energy Source	Fundamental Nuclear Energy Source
Solar	Gravitationally confined solar fusion reactions transmitted via photons
Fossil Fuels	Gravitationally confined solar fusion reactions transmitted via photons and stored in biomass
Geothermal	Naturally-occurring radioactive decays of materials within the Earth and Gravitational Work
Tidal	Nuclear reactions following the Big Bang Sustaining Current Gravitational Work
Nuclear Fission	Neutron-induced fission reactions of heavy nuclei
Nuclear Fusion	Nuclear fusion reactions of light nuclei

NSE Nuclear Science and Engineering

CLIMATE CHANGE AND ELECTRICITY

Electricity-Related Emissions are:

- The largest single source of CO_2 in industrialized countries
- Produced from combustion of fossil fuels in electrical generation
- Associated with most current electrical generation
- Likely to continue for several decades
- Nuclear, Solar and Geothermal Electrical Generation Technologies do not Emit Large Amounts of CO₂
- Nuclear and hydroelectric generation typically rank after coal and natural gas as electricity sources
- Other renewable electricity generation technologies are of minor importance, but are growing rapidly
- All Generation Technologies Face Environmental, Social, and Economic Barriers to Larger Scale Use

RENEWABLE ELECTRICITY TECHNOLOGIES

Technology	Phenomena				
Solar	Nuclear fusion-generated energy reaches Earth from sun as photons				
• Thermal	Collector materials absorb photons and become heated*	\Rightarrow	Heat engine working fluid becomes heated from collector*	\Rightarrow	Rankine cycle generation of AC electricity [†]
• Biomass	Solar photons are absorbed by plants in photosynthesis processes	⇒	Harvested plants are used as chemical feedstocks by synfuels or dried and burned [†]	⇒	Rankine cycle generation of AC electricity [†]
• Photovoltaic (PC)	Superconducting collector materials absorb photons, mobilizing electrons-hole pairs in the form of DC electric current*				
• Hydroelectric	Photons are absorbed in water, causing heating and evaporation into the atmosphere [†]	\Rightarrow	Atmospheric water vapor condenses and falls to earth, where it collects in water bodies [†]	\Rightarrow	Collected water flows downward through a turbine that turns an AC electric generator *
• Wind	Photons are absorbed in terrestrial materials that become heated*	\Rightarrow	Heat is transferred to atmospheric air that rises and flows as wind*	\Rightarrow	The wind flows through a turbine that turn a DC electric generator*
Geothermal	Radioactive decay reactions within the Earth heat magma that flows toward the Earth's surface, heating the crust [†]	\Rightarrow	Groundwater flowing in the crust is heated, and then withdrawn at the power plant [†]	\Rightarrow	Steam, heated by the groundwater, is used in a Rankine cycle for generation of AC electricity*

Energy form produced:

* Work/electricity: AC = alternating current electricity, DC = direct current electricity

[†] Heat

NSE Nuclear Science and Engineering

SOLAR ENERGY

- From sun, above Earth's atmosphere 1200 W/m²
- At Earth's surface
 - Maximum 1000 W/m²
 - Average 250 W/m²
- Average at latitude 45° in April 400 W/m²
- Seasonal variation ± 25–50% of mean (average)
- Causes of interruption of solar insolation
 - Clouds
 - Dust
 - Rain
 - Night

MOLTEN SALT SOLAR PLANT

The Department of Energy just invested \$737 million into the **Crescent Dunes Solar Energy** Project in Nevada, which will generate energy well into the night by using molten salt as an energy storage medium. To do this the plant will focus nearly 20,000 heliostats upon a solar power tower filled with salt, heating the material to 1,050 degrees Fahrenheit. Once it has been heated the salt will retain its thermal energy for a long time, and it can be mixed with water to produce steam on demand, which can be used to drive turbines to produce electricity.

http://inhabitat.com/nevadas-new-molten-salt-solar-plant-will-produce-power-long-after-the-sun-sets/

GEOTHERMAL LARDERELLO, TUSCANY, ITALY

Larderello is a Volcanically active area, renowned for Its geothermal productivity, now producing 10% of the world's entire supply of

geothermal electricity, amounting to 4,800 GWh per year and powering about a million Italian households. Its geology makes it uniquely conducive

Pipework for geothermal power generation in Valle del Diavolo (Devil's Valley), Larderello.

to geothermal power production, with hot granite rocks lying unusually close to the surface, producing steam as hot as 202°C (396 °F).

http://en.wikipedia.org/wiki/Larderello

NSE Nuclear Science and Engineering

GEOTHERMAL POWER PLANT AT THE GEYSERS NEAR SANTA ROSE, CA

http://pubs.usgs.gov/gip/dynamic/geothermal.html

1417

ELECTRICITY GENERATOR EFFICIENCIES

Technology	T-max (ºC)	Thermal Efficiency						
Steam-Rankine	500	0.40						
Fossil-Combined Brayton (Gas Turbine) and Rankine	700	0.60						
Nuclear-Rankine								
LWR	300	0.33						
Liquid Metal or Molten Salt	500	0.40						
Geothermal-Rankine	200	0.25						
Solar Thermal	700-300	0.60-0.33						
Solar PV*		0.10-0.30**	Based upon photon energy flux					
Wind*		0.45-0.59**	Based upon wind kinetic energy flux					
Hydro-electric		0.90**	Based upon water potential energy flux					
*Direct conversion system, not a heat engine **Efficiency = $\left[\frac{Work}{Energy - In}\right]$								

RENEWABLE ELECTRICITY TECHNOLOGIES, continued

Technology	Economics/Costs			Environmental Costs					Dispatchable Generation?	Hazards
	Fuel	0&M*	Capital	Land	Water	Pollutants	Labor	Ecological		
Solar										
Thermal	Free	Moderate	High	High	Low	Low	Low	Low	Quasi	Low
Biomass	Free	Moderate	High	High	High	High- Fertilizers	High	High	Yes	High
Photovoltaic	Free	Moderate	High	High	Low	Low	Low	Low	No	Low
Hydroelectric	Free	Low	High	High	Low	Low	Low	High	Yes	High
Wind	Free	Low	High	Moderate	Low	Low	Low	Birds	No	Moderate
Geothermal	Free	Moderate	High	Low	Low	Moderate- Brine	Low	Low	Yes	Low

*Operations and Maintenance

22

NSE Nuclear Science and Engineering

ENVIRONMENTAL EFFECTS OF ENERGY SOURCES

FUEL PHASE	Coal	Petroleum	Natural Gas	Nuclear	Hydro	Solar Terrestrial Photovoltaic	Solar Power Tower	Wind	Fusion	Geothermal
Extraction	Mining Accidents Lung Damage	Drilling-Spills (off-shore)	Drilling	Mining Accidents Lung Damage	Construction	Mining Accidents			He, H ² , Li Production	
Refining	Refuse Piles	Water Pollu- tion		Milling Tails						
Transportation	Collision	Spills	Pipeline Explosion							
On-Site										
Thermal	High Efficiency	High Efficiency	High Efficiency	Low Efficiency		Low Efficiency Ecosystem Change	Ecosystem Change			Low Efficiency
Air	Particulates- SO ₂ , NO _x	SO_2, NO_x	NO _x	BWR Radia- tion Releases						H ₂ S
Water	Water Treat- ment Chemi- cals	Water Treat- ment Chemi- cals	Water Treat- ment Chemi- cals	Water Treat- ment Chemi- cals	Destroys Prior Ecosystems	Water Treat- ment Chemi- cals	Water Treat- ment Chemi- cals		Tritium in Cooling Water	Brine in Streams
Aesthetic	Large Plant Transmission Lines	Large Plant Transmission Lines	Large Plant Transmission Lines	Small Plant Transmission Lines	Small Plant Transmission Lines	Poor Large Area	Poor Large Area	Large Area Large Towers Noise?	Small Area	Poor Large Area
Wastes	Ash, Slag	Ash		Spent Fuel Transportation Reprocessing Waste Storage		Spent Cells			Irradiated Struc- tural Material	Cool Brine
Sprecial Problems						Construction Accidents		Bird, Human Injuries	Occupational Radiation Doses	
Major Accident	Mining	Oil Spill	Pipeline Explosion	Reactor Cooling	Dam Failure	Fire			Tritium Release	

POWER GENERATOR

Manufacture: DEUTZ GERMANY Type: 6M640 Rated Output: 6350KW Year: 1992 Running Hours: 30695h

Mechanical Part Lub. Oil Supply Systems Cooling System Fuel Oil Supply Systems Compress-Air Systems Exhaust Gas System Electrical Part Low-voltage Distribution Panels Control, Measuring & Protection Panel

Pilstick 18PC4-2B HFO Second hand power plant equipment.

ELECTRICAL SUBSTATION

A 115 kV to 41.6/12.47 kV 5 MVA 60 Hz substation with circuit switcher, regulators, reclosers and control building at Warren, Minnesota. This substation shows elements of lowprofile construction; apparatus is mounted on individual columns.

en.wikipedia.org

NSE Nuclear Science and Engineering

ROLE OF GENERATION TECHNOLOGIES ON THE GRID

Technology	Use Priority	Use Rationale	Typical Duty Cycle*		
Renewable: Solar PV, Wind, Geothermal, Hydro	1	Lowest marginal generating cost, fuel is free	0.2 - 0.30		
Base Load: Nuclear, Coal, Natural Gas (combined cycle	2	High capital cost, low operating cost, low fueld cost	0.90 - 0.95		
Intermediate Load: Natural Gas, Coal, Petroleum	3	Intermediate capital cost, higher operating cost, more expensive fuel	0.3 - 0.7		
Peaking Load: Pumped Hydro, Gas Turbines, Diesel Generators	4	Low capital cost, high operating cost, expensive fuel	< 0.3		
*Fraction of a year in service					

37

INTEGRATION OF RENEWABLE ENERGY

SOURCES WITH THE GRID

- Generating assets are dispatched in order of increasing marginal electricity production costs (i.e., fuel and operating costs)
- ⇒ Renewables, Geothermal, Nuclear, Natural Gas, Diesel
- However, solar PV and wind are not dispatchable (i.e., cannot be turned on at-will) and can shut down suddenly
- ⇒ Back-up dispatchable assets are needed also
- Consequences: Large-scale use of solar PV and wind electrical generators greatly increases the required capital investment in whole-grid generating assets
- Large scale electricity storage would be valuable, but is now unavailable
- Production of hydrogen for use in synfuels could become important

California Daily Spring Electricity Demand and Production with Different Levels of Photovoltaic Electricity Generation

NOTES ON FIGURE

- Far left figure shows mix of electricity generating units supplying power on a spring day in California today. The figures to the right shows the impact on grid of adding PV capacity assuming it is dispatched first—low operating cost.
- Percent PV for each case is the average yearly fraction of the electricity provided by PV. Initially PV helps the grid because PV input roughly matches peak load. Problems first show up on spring days as shown herein when significant PV and low electricity load.
- With 6% PV, wild swings in power supply during spring and fall with major problems for the grid. By 10% PV on low-electricity-demand days PV provides most of the power in the middle of the day.
- California has a free market in electricity. In a free market PV producers with zero
 production costs will accept any price above zero. As PV grows, revenue to PV begins
 to collapse in the middle of the day. Collapsing revenue limits PV new build. Largescale PV also destroys base-load electricity market while increasing market for peak
 power when no sun. In the U.S. that is getting filled with gas turbines. Similar effects at
 other times with large wind input.
- This is the problem with a low-carbon grid as renewables become significant
- Bottom line, low carbon grid with renewables has major challenges as outlined by recent OECD report. Implies different requirements for future nuclear plants to fully compete.

NSF Phir Nuclear Science and Engineering UNITED STATES ELECTRICAL GRID FACTORS Grid Stage Voltage (kV) Length (km) 3.3-25 **Distribution System** Subtransmission System 33-132 4,000,000 115-765* Transmission System, AC 200.000 Transmission System, DC 500 2200 * Rate of loss $\leq 0.7\%/100$ km Ideal a:1 Total Losses = 6% Small N·N $\frac{\text{Power} - \text{Trans}}{\text{Power} - \text{Load}} = \alpha^2$ Ve V_{p} E. Maximum distance ~ 4000km for AC. 7000km for DC

TRANSMISSION OF ALTERNATING CURRENT (AC) AND DIRECT CURRENT (DC) ELECTRICITY

- Alternating Current
 - Maintaining system stability over large distances is expensive, difficult (must balance reactive and real power components)
 - Transmission at high voltage is easier via use of transformers
- Direct Current
 - Maintaining system stability over large distances is easier (current and voltage have steady values)
 - Transmission at high voltage is more difficult as high voltage requires rectification using thrystors (a kind of diode) and high voltage AC inputs

SUMMARY

- Electricity Generation
 - Fossil-fueled technologies dominate worldwide electricity generation
 - Nuclear and hydroelectric generation are the main current nonfossil technologies
 - Other renewable electricity technologies may become important in the future, but face important barriers
- Electrical Grid
 - National electrical grids reflect the evolution of the electricity industry from local to national scales over 120 years
 - Electrical grids are changing due to
 - · Introduction of competitive electricity markets
 - Increased use of renewable generation technologies
 - Introduction of "smart grid" technologies