A new energy culture

ne Cst

sustainability and territories

Oil spill response and countermeasures

Dr. sc. Lidia Hrncevic, Associate Professor, Faculty of Mining, Geology & Petroleum Engineering, University of Zagreb, Croatia

Major sources of marine oil pollution

Erasmus+

INTERNATIONA TANKER OWNERS POLLUTION FEDERATION

Major tanker oil spills

Source: ITOPF

Marine environment- global conventions

London Convention - Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter (), London, 1972.

MARPOL 73/78-International Convention for the Prevention of Pollution from Ships, 1973, as modified by the Protocol of 1978 relating thereto (), London 1973 and 1978.

OILPOL- International Convention for the Prevention of Pollution of the Sea by Oil, London 1954, 1962 and 1969.

Barcelona Convention, Convention for the Protection and Development of the Marine Environment and Coastal Region of the Mediterranean Sea, Barcelona, 1976.

OPRC-International Convention on Oil Pollution Preparedness, Response and Co-operation (), London, 1990.

OPRC-HNS PROTOCOL- Protocol on Preparedness, Response and Co-operation to Pollution Incidents by Hazardous and Noxious Substances, London, 2000.

OSPAR Convention-Convention for the Protection of the Marine Environment of the North-east Atlantic, Paris, 1992.

Contingency planning

•Coordination of all aspects of the response to an oil spill

•Scope- from single facility to state level

•"Prepare for the worst, expect the best" principle

Testing

Contingency planning

sustainability and territories

• Phases:

- Alerting and reporting
- Evaluation and mobilization
- Containment and recovery
- Disposal
- Remediation and restoration

Contingency planning-Croatia

- •Contingency Plan for Accidental Marine Pollution (Official Gazette 8/08)
- Procedures and measures for predicting, preventing, resticting, preparedness and response
- •Oil spill > 2000 m³
- •Entities:
- Headquarters for the implementation of the Contingency Plan –Headquarters
- Maritime Rescue Coordination Centre Rijeka- MRCC
- County Operational Centre- COC

- Evaporation
- Emulsification-2 i 3
- Natural Dispersion-4
- Dissolution
- Photo-oxidation
- Sedimentation-5
- Adhesion
- Biodegradation
- Sinking

10

• Formation of tar balls

- Evaporation
- Emulsification-2 i 3
- Natural Dispersion-4
- Dissolution
- Photo-oxidation
- Sedimentation-5
- Adhesion
- Biodegradation
- Sinking
- Formation of tar balls

- Evaporation
- Emulsification-2 i 3
- Natural Dispersion-4
- Dissolution
- Photo-oxidation
- Sedimentation-5
- Adhesion
- Biodegradation
- Sinking
- Formation of tar balls

sustainability and territories

- Evaporation
- Emulsification-2 i 3
- Natural Dispersion-4
- Dissolution
- Photo-oxidation
- Sedimentation-5
- Adhesion
- Biodegradation
- Sinking
- Formation of tar balls

- Evaporation
- Emulsification-2 i 3
- Natural Dispersion-4
- Dissolution
- Photo-oxidation
- Sedimentation-5
- Adhesion
- Biodegradation
- Sinking
- Formation of tar balls

Source: M. Fingas, The Basics of Oil Spill Cleanup, 2nd Ed., 2001.

- Evaporation
- Emulsification-2 i 3
- Natural Dispersion-4
- Dissolution
- Photo-oxidation
- Sedimentation-5
- Adhesion
- Biodegradation
- Sinking
- Formation of tar balls

Source: M. Fingas, The Basics of Oil Spill Cleanup, 2nd Ed., 2001.

- Evaporation
- Emulsification-2 i 3
- Natural Dispersion-4
- Dissolution
- Photo-oxidation
- Sedimentation-5
- Adhesion
- Biodegradation
- Sinking
- Formation of tar balls

sustainability and territories

Containment or deflection

of oil slick

•Types:

- Fence booms
- Curtain booms2,3
- External tension member boom

- Special types:

- Bubble barrier-4
- Sorbent booms-5
- Fire-resistant booms 6 i7

sustainability and territories

Containment or deflection

of oil slick

•Types:

- Fence booms
- Curtain booms2,3
- External tension member boom

- Special types:

- Bubble barrier-4
- Sorbent booms-5
- Fire-resistant booms 6 i7

Erasmus+

sustainability and territories

- Containment or deflection of oil slick
- •Types:
 - Fence booms
 - Curtain booms2,3
 - External tension member boor

- Special types:

- Bubble barrier-4
- Sorbent booms-5
- Fire-resistant booms 6 i7

sustainability and territories

Containment or deflection

of oil slick

•Types:

- Fence booms
- Curtain booms2,3
- External tension member boom

- Special types:

- Bubble barrier-4
- Sorbent booms-5
- Fire-resistant booms 6 i7

Erasmus+

sustainability and territories

Containment or deflection

of oil slick

•Types:

- Fence booms
- Curtain booms2,3
- External tension member boom

- Special types:

- Bubble barrier-4
- Sorbent booms-5
- Fire-resistant booms 6 i7

sustainability and territories

Containment or deflection

of oil slick

•Types:

- Fence booms
- Curtain booms2,3
- External tension member boom

- Special types:

- Bubble barrier-4
- Sorbent booms-5
- Fire-resistant booms 6 i7

- Containment or deflection of oil slick
- •Types:
 - Fence booms
 - Curtain booms2,3
 - External tension member boom
 - Special types:
 - Bubble barrier-4
 - Sorbent booms-5
 - Fire-resistant booms 6 i7

sustainability and territories

 Containment or deflection of oil slick

Characteristics:

- Buoyancy-to-weight ratio
- Heave response
- Roll-over response

a new energy culture sustainability and territories

 Containment or deflection of oil slick

Characteristics:

- Buoyancy-to-weight ratio
- Heave response
- Roll-over response

• Remove oil from water surface

•Types:

- Oleophylic surface skimmer
- Weir skimmers
- Suction skimmers
- Elevating skimmers
- Submersion skimmers
- Vortex skimmers

• Remove oil from water surface

•Types:

- Oleophylic surface skimmer
- Weir skimmers
- Suction skimmers
- Elevating skimmers
- Submersion skimmers
- Vortex skimmers

Source: M. Fingas, The Basics of Oil Spill Cleanup, 2nd Ed., 2001.

• Remove oil from water surface

•Types:

- Oleophylic surface skimmer
- Weir skimmers
- Suction skimmers
- Elevating skimmers
- Submersion skimmers
- Vortex skimmers

sustainability and territories

• Remove oil from water surface

•Types:

- Oleophylic surface skimmer
- Weir skimmers
- Suction skimmers
- Elevating skimmers
- Submersion skimmers
- Vortex skimmers

sustainability and territories

• Remove oil from water surface

•Types:

- Oleophylic surface skimmer
- Weir skimmers
- Suction skimmers
- Elevating skimmers
- Submersion skimmers
- Vortex skimmers

Source: M. Fingas, The Basics of Oil Spill Cleanup, 2nd Ed., 2001.

• Remove oil from water surface

•Types:

- Oleophylic surface skimmer
- Weir skimmers
- Suction skimmers
- Elevating skimmers
- Submersion skimmers
- Vortex skimmers

• Remove oil from water surface

•Types:

- Oleophylic surface skimmer
- Weir skimmers
- Suction skimmers
- Elevating skimmers
- Submersion skimmers
- Vortex skimmers

sustainability and territories

• Remove oil from water surface

•Types:

- Oleophylic surface skimmer
- Weir skimmers
- Suction skimmers
- Elevating skimmers
- Submersion skimmers
- Vortex skimmers

• Remove oil from water surface

•Types:

- Oleophylic surface skimmer
- Weir skimmers
- Suction skimmers
- Elevating skimmers
- Submersion skimmers
- Vortex skimmers

Source: M. Fingas, The Basics of Oil Spill Cleanup, 2nd Ed., 2001.

• Remove oil from water surface

•Types:

- Oleophylic surface skimmer
- Weir skimmers
- Suction skimmers
- Elevating skimmers
- Submersion skimmers
- Vortex skimmers

• Remove oil from water surface

•Types:

13

- Oleophylic surface skimmer
- Weir skimmers
- Suction skimmers
- Elevating skimmers
- Submersion skimmers

Erasmus+

- Vortex skimmers

COLLECTION WELL PUMP TO STORAGE ROTATING BELT OR FIXED PLANE MOVING VESSEL **OIL SLICK** SCRAPER DIRECTION OF VESSEL MOVEMENT

sustainability and territories

- Sinking agents
- Sorbent agents
- Solidifiers or gelling agents
- Collecting agents
- Recovery enhancers
- •Emulsion breakers and inhibitors
- •Dispersants
- •Biodegradation agents

- Sinking agents
- Sorbent agents
- Solidifiers or gelling agents
- Collecting agents
- Recovery enhancers
- Emulsion breakers and inhibitors
- •Dispersants
- •Biodegradation agents

- Sinking agents
- Sorbent agents
- Solidifiers or gelling agents
- Collecting agents
- Recovery enhancers
- •Emulsion breakers and inhibitors
- •Dispersants
- •Biodegradation agents

Source: M. Fingas, The Basics of Oil Spill Cleanup, 2nd Ed., 2001.

- Sinking agents
- Sorbent agents
- Solidifiers or gelling agents
- Collecting agents
- Recovery enhancers
- •Emulsion breakers and inhibitors
- •Dispersants
- •Biodegradation agents

Shoreline treatment

- A survey and assessment of the shoreline oiling conditions
- Development of treatment recommendations and priorities
- Establishment of treatment endpoints
- A signoff process to determine when endpoints are reached

Waste

Final remarks

•Hydrocarbon exploration and production- 2% of marine oil pollution

Contingency plans

- •Oil spill response:
 - containment- booms
 - removal- skimmers & spill treating agents

•Site restoration

Want to learn more?

sustainability and territories

www.itopf.com

http://oils.gpa.unep.org

http://response.restoration.noaa.gov

