ne Cst

A new energy culture

sustainability and territories

Possibilities of offshore drilling in Croatia

The state of the s

Dr. sc. Zdenko Kristafor, Full Professor, Faculty of Mining, Geology & Petroleum Engineering, University of Zagreb, Croatia

neb CSL

The UN Convention on the Law of the Sea

✤UNCLOS convention (the <u>United Nations Convention on the Law at the</u> <u>Sea; came into force on 16/11/1994</u>)

- **a territorial sea** a belt of coastal waters extending at most 12 nautical miles (22,2 km) from the baseline (usually the mean low-water mark) of a coastal state;
- **a continental shelf** a natural prolongation of the land territory to the continental's margin outer edge or 200 nautical miles from the coastal state's baseline, whichever is greater;
- **an exclusive economic zone** a sea zone over which a state has special rights regarding the exploration and use of marine resources. It stretches from the baseline out to 200 nm from its coast; within this area, the coastal nation has sole exploitation right over all natural resources; it have to be declared by the coastal state.

UNCLOS

 a contiguous zone - further 12 nautical miles from the territorial sea baseline limit in which the state can continue to enforce laws in four specific areas: customs, taxation, immigration and pollution.

a new energy culture sustainability and territories

Continental shelf

Convention on the continental shelf

- continental shelf 6,7% of seas and oceans area
- continenatl slope 11%
- continental rise- 3,1%
- bottom of the ocean, abyssal plain

Offshore drilling options

Source: www.eoearth.org

Drilling platform types for different sea depths

Standards for classification

International Association of Classification Societies - IACS is a technically based organization consisting of twelve marine classification societies, such as ABS, Bureau Veritas, Det Norske Veritas, Lloyd's Register, and others. >,,Marine classification is a system for promoting the safety of life, property and the environment primarily through the establishment and verification of

compliance with technical and engineering standards for the design, construction and life-cycle maintenance of ships, offshore units and other marine-related facilities".

➢These standards are issued by the classification society as published rules. A vessel that has been designed and built to the appropriate rules of a society may apply for a certificate of classification from that society. The society issues this certificate upon completion of relevant classification surveys.

➤A ship built in accordance with an IACS Member's rules will be assigned a class designation by the society on satisfactory completion of the relevant surveys.

ABS rules and guides

- Rules for building and classing Mobile offshore drilling units MODU (January 2015), is a set of "Generic rules for conditions and classification....and survey under construction"; the following rules are included:
 - conditions of classification
 - materials and welding
 - hul construction and equipment
 - machinery and systems
 - surveys
- Whereas classification requires periodic surveys of the classed vessel or offshore unit throughout its life (every five years), certification verifies that the item conforms to designated standards at a specified time. Certification can establish compliance with ABS, national, international, industry or other standards.

Other relevant conventions and codes

During the survey classification society is verifying compliance and acceptance of the following international conventions and codes:

- Code for Construction and Equipment of Mobile Offshore Drilling Units, 1989. MODU CODE;
- International Convention on Load Lines, 1996;
- International Convention for the Safety of Life at Sea SOLAS;
- International Convention on Tonnage Measurements of Ships;
- International Convention for the Prevention of Polution for Ships 1973/1978.

Drilling rig - sea depth

 decision on drilling to be used for exploratory drilling is affected by the water depth

MODU types

Source: ETA Offshore Seminars, Inc.

- submersible

(bottom supported - shallow waters...)

- jack-up

(self-elevating drilling units - SEDU, to max. 150 m)

- semi-submersible

(floating drilling units, from 50 to 3000 m +

- drillship

(ex. Saipem 12000 ft - appr. 3600 m)

- barge

(mostly not self-propelled)

 tender assist drilling (shaped like barges or ships, moored next to drilling equipment set)

Jacking and processing modulus building

a new energy culture sustainability and territories

Jacket towing to position

- towing a jacket

- jacket uprighting using crane barge

Fixing jacketed structure

- steel jacketed structure

Preliminary work prior to drilling (spud in)

- driving conductor string

- jack-up platform positioning

Drilling in progress

- drilling rig "Ocean King" on a site

net cstanability and territories

Assembling production modulus

- jacket and modulus connecting

- towing of production modulus

Platform in production

- wellheads

- assembled platform in production

Mudline suspension system (MLS)

sustainability and territories

MLS system enables the well to be temporarily abandonned, when the total depth is achieved, and reconnecting (tie-back) the mudline hangers to the surface for re-entry and/or completion

new energy culture sustainability and territories

Keeping the vessel on required spot

- mooring systems for semisubmersible (up to 500 m of water depth);
- dynamic positioning system semisubmersible platforms and drillships (GPS, space based satellite navigation system providing position and time information in all weather conditions anywhere on or near the earth); propellers able to rotate full circle keeping vessel in exactly required position.

Source: www.farinha0.tripod.com

Deeper sea drilling

Source: Deep water: The Gulf Oil Disaster and the Future of Offshore Drilling, Report to the President, January 2011

a new energy culture sustainability and territories

net cst a new energy culture sustainability and territories

Deep exploratory well plan (Vlasta - 1 well)

- Conductor ø 30"
- setting depth 250 m
- Surface casing string ø 20"
- setting depth 700 m
- I. intermediate string ø 13 3/8"
- setting depth 2500 m
- II. intermediate string ø 9 5/8"
- setting depth 4800 m
- Liner ø 7
- setting depth 6500 m

Source: INA Plc, documentation

Underwater drilling (moored platforms a new energy culture sustainability and territories stalna vodilica okvirna vodilica proširivač linija za navođenje dlijeto temeljna kolona privremena bazna vodilica privremena bazna vodilica privremena bazna vodilica

Source: www. google.hr/search?q=semi+submersible+wellhead&espv

Subsea BOP stack

Source: INAgip, Plc photodocumentation;

5,001' 53' 5,054

a new energy cu sustainability and territories

Source: www.oilpro.com

- wellhead protection while drilling in deep sea
- Erasmus + (blowout preventers on the ocean floor)

Underwater drilling (using dynamic positioning sysem)

Running conductor pipe

- After positioning, a Ø 36" (0,92 m) conductor is attached to the guide base with acoustic signal sources installed
- Running down to the sea floor on drill pipes
- The conductor pipes penetrate the sea floor (20 50 m)
- The process is surveyed by TV-camera or remotely operated vehicle (ROV)

Source: www.youtube.com/Animation of deepwater drilling

Gas fields in Northern Adriatic

Source: INAgip, Plc documentation

a new energy culture sustainability and territories

Production platforms in the northern Adriation

Erasmus+

Source: INAgip, Plc photodocumentation

- 20 platforms

~ 50 production wells

Offshore activities overview in Croatia

- offshore seismic surveys in the Adriatic started in 1968;
- first offshore drilling in 1970 using contracted platform "Neptune";
- the total of 133 wells drilled offshore, on islands and in coastal area;
- first gas production platform "Ivana A" in production since 1999;
- oil and gas production in Croatia from 33 oil an 25 gas and gascondensate onshore fields;
- offshore gas production from 9 gas fields;
- the past few years offshore gas production exceeded production from all onshore gas fields;
- 20 gas production platforms in the Adriatic installed;
- oil and gas account for about 60% of the primary energy in Croatia.

Contemporary exploration overview of the Adriatic

- 29 exploratory areas are defined;

- 8 blocks in sea depth up to 100 m;
- 16 blocks from 100 to 500 m;
- 5 blocks in sea depths from 500 m
 to 1300 m

Source: www.azu.hr

sustainability and territori

Worldwide achievements in offshore drilling

- the deepest offshore well: 10683 m (10685 m MD)
 - september 2009; in the Tiber oil field at Keathley Canyon block 102 in 1259 m of water - Deepwater Horizon, dynamically positionned semisubmersible offshore drilling rig, owned by Transocean, drilled the deepest offshore well;
- the greatest sea depth: 3107 m (10,194 ft)
- offshore drilling group Transocean reported that it had set the world record for deep water drilling at an ocean depth of 3107 m, off the coast of India (in 2011);
- extended reach wells
 - Qatar jack-up platform owned by Transocean (operator: MAERSK Oil Qatar AS) in only 36 days drilled a well of 12289 m MD with horizontal section of 10902 m;
 - Sahkalin-1 project; extended reach well at the Chayo field; O-14 production well (Orlan drilling platform) 13500 m MD (44,291 ft); horizontal reach -

12033 m (39,478 ft);

Croatian offshore drilling rigs

Jack-up drilling platform Labin

Source: CROSCO, Integrated drilling services Co. photodocumentation

Semisubmersible drilling platform Zagreb - 1

Erasmus+

Offshore production systems

Field development options include a definition of number of wells to be drilled, selection of the most feasible type of production facility, oil & gas processing, power-generation systems and other operational factors. All of those is largely affected by:

- geographical position of hydrocarbon reservoir;
- sea depth at the site of production system;
- distance from the shore;
- reservoir size and quantity of recoverable reserves;
- oil and gas prices;
- production and transportation expenditures, etc.

Types of production platforms

Source: www.en.wikipedia.org

1,2) conventional fixed platforms; 3) compliant tower; 4,5) vertically moored tension leg and mini-tension leg platform (TLP); 6) spar; 7,8) semisubmersibles; 9) floating, production, storage and offloading facility (FPSO); 10) subsea completion and tie-back to host facility

